Menu główne:
Wszechświat > Supernowa > Dokładny Opis
W widmach supernowych typu Ia nie ma śladów helu, w pobliżu maksimum jasności znajdują się tam natomiast linie absorpcyjne krzemu. Najczęściej przyjmowana obecnie teoria mówi, że supernowe tego typu powstają, gdy węglowo-tlenowy biały karzeł ściąga na siebie materię z towarzyszącej gwiazdy, zazwyczaj czerwonego olbrzyma, tak długo, aż jego masa przekroczy tzw. granicę Chandrasekhara (ok. 1,4 masy Słońca). Wzrost ciśnienia podnosi temperaturę w pobliżu środka gwiazdy, rozpoczynając trwający około 100 lat okres konwekcji. W pewnym momencie tej fazy następuje zapłon reakcji termojądrowych. Nie wiadomo, w którym dokładnie miejscu następuje zapłon, jednak spalanie szybko nabiera tempa, ogarniając wkrótce całą gwiazdę. Przedmiotem dyskusji naukowców pozostaje, kiedy płomień przekształca się w detonację. Uwolniona wówczas energia ok. 1044 dżuli powoduje, że cała gwiazda gwałtownie eksploduje wywołując falę uderzeniową rozchodzącą się z prędkością około 10 tysięcy km/s. Następuje również ogromny wzrost jasności gwiazdy - świeci ona jaśniej niż cała Galaktyka.
Teoria ta jest podobna do dotyczącej gwiazd nowych, gdzie biały karzeł ściąga materię dużo wolniej i nie osiąga granicy Chandrasekhara. W przypadku nowych, opadająca materia rozpoczyna reakcje termojądrowe w pobliżu powierzchni gwiazdy, co nie doprowadza do jej całkowitego zniszczenia.
Supernowe typu Ia posiadają charakterystyczną krzywą blasku (wykres jasności w zależności od czasu po eksplozji). Blisko okresu maksymalnej jasności, ich widmo zawiera linie średniej masy pierwiastków od tlenu po wapń; są to główne składniki zewnętrznych powłok gwiazdy. Miesiące po wybuchu, gdy zewnętrzne warstwy rozszerzą się i staną niemal przezroczyste, widmo zdominowane jest przez światło wyemitowane przez materię z pobliża jądra gwiazdy: ciężkie pierwiastki wytworzone bezpośrednio podczas eksplozji, w większości należące do grupy żelaza. Rozpad radioaktywny niklu-56 poprzez kobalt-56 do żelaza-56 wytwarza wysokoenergetyczne fotony, które dominują w wyrzucanej energię od mniej więcej środkowego etapu eksplozji. Zapis reakcji:
W przeciwieństwie do innych rodzajów supernowych, obiekty typu Ia są zazwyczaj znajdowane we wszystkich typach galaktyk, nawet eliptycznych. Nie wykazują żadnych związków z obszarami formowania gwiazd.
Podobieństwo kształtów krzywych blasku wszystkich znanych supernowych typu Ia umożliwiło zastosowanie ich jako tzw. standardowych świec w astronomii pozagalaktycznej. Wszystkie supernowe tego typu osiągają podobną maksymalną jasność absolutną ok. -19,3 magnitudo. Dzięki temu, mierząc jasność obserwowaną i porównując z jej wartością teoretyczną, astronomowie mogą w łatwy sposób obliczyć odległość od gwiazdy i jej macierzystej galaktyki. Pod koniec lat 90. obserwacje supernowych typu Ia doprowadziły do nieoczekiwanego wniosku, że ekspansja Wszechświata przyspiesza, ponieważ odległe supernowe o dużych przesunięciach ku czerwieni (z > 0,2) wydają się świecić słabiej niż te lokalne. Obserwacje umieszcza się na diagramie Hubble'a, gdzie w funkcji przesunięcia ku czerwieni zaznaczony jest moduł odległości supernowych. Po dopasowaniu do danych obserwacyjnych modelu kosmologicznego, otrzymuje się najbardziej prawdopodobną kombinację parametrów: stałej kosmologicznej i gęstości krytycznej we Wszechświecie. W analizie tej przyjmowane jest założenie, że jasność absolutna obiektów nie jest funkcją przesunięcia ku czerwieni. Inaczej, proponowane są alternatywne wyjaśnienia obserwacji odległych supernowych: ewolucja samego mechanizmu eksplozji lub absorpcja światła przez pył znajdujący się na linii widzenia (Leibundgut ., 2001, Annual Reviews of Astronomy and Astrophysics, 39, 67).
Eksplozje supernowych typu Ia uwalniają najwięcej energii spośród wszystkich znanych rodzajów supernowych. Najdalszy kiedykolwiek zaobserwowany pojedynczy obiekt (pomijamy galaktyki i gromady kuliste) był supernową Ia oddaloną miliardy lat świetlnych od Ziemi.